
1

Section 1: Cover Sheet

Final Report

Period of Performance: 12/1/07 – 11/30/10

Principal Investigator: Suvrajeet Sen
Affiliation: The Ohio State University
Address: Industrial and Systems Engineering
 Baker Systems Engineering Bldg
 1971 Neil Avenue, Columbus, OH 43210

Award Number: FA9550-08-1-0154

Project Title: Models and Algorithms involving very large scale

stochastic mixed-integer programs (SMIP)

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
28 FEB 2011

2. REPORT TYPE
Final

3. DATES COVERED
 01-12-2007 to 30-11-2010

4. TITLE AND SUBTITLE
Models and Algorithms involving very large scale stochastic
mixed-integer programs

5a. CONTRACT NUMBER
FA9550-08-1-0154

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Sen Suvrajeet

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ohio State University,Enarson Hall 154 W 12th Avenue,
Columbus,OH,43210

8. PERFORMING ORGANIZATION REPORT NUMBER
; AFRL-OSR-VA-TR-2011-0224

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR, 875 North Randolph Street, Suite 325, Arlington, VA,
22203

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AFRL-OSR-VA-TR-2011-0224

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Stochastic Mixed Integer Programs (SMIP) are recognized as one of the most formidable classes of
mathematical programming problems. Not only are there significant challenges due to potentially large
number of scenarios, but, SMIP with integers in the second stage give rise to a non-convex and
discontinuous recourse function that may be difficult to optimize. As a result of this project, there have
been significant advances in the design of algorithms for solving SMIP problems. Thanks to this project,
we are able to report on solution to SMIP problems with over a million binary variables in less than 3
hours of computing on a desk-top machine! These problems arise in a variety of Air Force applications,
such as adaptive command and control (AC2) under uncertainty. For instance, consider a situation in
which assignments of pilots/aircrafts to targets may be contingent of sensor data revealed during the
mission. In such situations, a preliminary set of assignments are made, recognizing that these will be
revised once more reliable observations (regarding targets) are available. While such adaptive methods can
enhance the effectiveness of C2, uncertainties can vastly enlarge the set of choices, and new algorithmic
tools are necessary. Our algorithms solve such problems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report
(SAR)

18.
NUMBER
OF PAGES

17

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Section 2: Objectives

The main purpose of this research project is to study new algorithms for Very Large-scale
Stochastic Mixed-Integer Programming (VL-SMIP) problems. These problems arise in a
variety of defense applications, such as adaptive command and control (AC2) under
uncertainty. For instance, consider a situation in which assignments of pilots/aircrafts to
targets may be contingent of sensor data revealed during the mission. In such situations, a
preliminary set of assignments are made, recognizing that these will be revised once more
reliable observations (regarding targets) are available. While such adaptive methods can
enhance the effectiveness of C2, uncertainties can vastly enlarge the set of choices, and
new algorithmic tools are necessary. Another potential use of VL-SMIP arises in
selecting base locations from which to respond so that damage to valuable assets can be
minimized during simultaneous attacks on several assets.1

The basic research that allows us to address VL-SMIP problems are as follows.

 Thrust A: Algorithms for Very Large-scale Stochastic Programming. Our
approach to stochastic programming is based on decomposition-coordination
algorithms which work on smaller pieces of a VL-SMIP, and coordinate these
pieces by using novel convexification methods based on disjunctive programming
([A.1], [A.2]2). For VL-SMIP, we have also designed specialized cut generation
methods which are Stochastic Linear Programming (SLP) extensions of the
traditional Cut Generation LP (CGLP) used for deterministic MIP problems. In
addition, to VL-SMIP, we have also devised methods that accelerate cut
generation for SLP problems by using re-sampling (A.).

 Thrust B: Algorithms for Deterministic MIP. Although the main focus of our
research is on VL-SMIP, algorithms for the latter require advances for
deterministic MIP algorithms which can be efficiently integrated with Stochastic
Programming (SP), leading to algorithms for the VL-SMIP. Indeed, one of the
more important results of this project is the discovery of a pure cutting plane
algorithm that can solve, in finite time, a general deterministic MIP. Prior to our
result, pure cutting plane algorithms were only available for binary MIP, and the
question of finiteness had been open since the first MIP cutting planes due to
Gomory in the 1960’s. As expected, this discovery is being leveraged for the
solution of VL-SMIP.

In this report, we provide overviews of each of these thrusts, with further details available
in the papers that have resulted from the grant.

1 Research that is of particular relevance to the Air Force is highlighted in this manner
2 References to work in thrust A are referred to as [A.x], while those for thrust B are [B.x]. Citations other
than those produced as a result of this project are listed as [C.x].

3

Section 3: Accomplishments / New Findings: Research
Highlights and Relevance to the Air Force Mission

This section presents the principal research accomplishments of this project. It is
organized into four main sub-sections, each representing summaries of two important
findings for each thrust area. These new nuggets of knowledge cover a wide array of
discrete optimization research, ranging from new theory, algorithms, and computational
experiments. It should be noted that the success for VL-SMIP is predicated on advances
in both MIP as well as SLP. Consequently, we present the results in that order. In each
section we first describe the challenge, and then provide a synopsis of the research
approach.

3.1 Algorithms for Very Large-scale Stochastic Mixed-Integer Programming
(Thrust A)

Stochastic Mixed Integer Programs (SMIP) are recognized as one of the most formidable
classes of mathematical programming problems. Not only are there significant challenges
due to potentially large number of scenarios, but, SMIP with integers in the second stage
give rise to a non-convex and discontinuous recourse function that may be difficult to
optimize. [C.1] provides an illustration of how the presence of integer variables in the
second stage leads to extremely complicated (non-convex and discontinous) recourse
functions. Over the past few years, there have been significant advances in the design of
algorithms for solving SMIP problems (see [C.8] and [A.5] for surveys). However,
computational implementations, and results for large scale problems have been slow in
coming. Thanks to this project, we are able to report on solution to SMIP problems with
over a million binary variables in less than 3 hours of computing on a desk-top machine.

VL-SMIP Challenge

In order to maintain simplicity in this presentation, we assume that the second-stage
problem satisfies the complete recourse property. Assuming that the random variable
modeling uncertainty is discrete, with finite support Ω ω , … , ωN , a two-stage SMIP
may be stated as

(3.1.1) Min ∑ Ω
(3.1.2) s.t.
(3.1.3) Ω
(3.1.4) , Ω 0, integer, , integer, .

Despite the fact that there are several assumptions underlying problem (3.1.1)-(3.1.4), it
is somewhat general from the IP point of view since both the first and second stage
variables allow general mixed-integer problems.

Suppose now that we wish to apply a resource directive decomposition method (i.e.
Benders' decomposition). At iteration k of such a method, we solve one second-stage

4

subproblem for each outcome , and assuming that there is an appropriate solution
method for the second-stage, then we can obtain a non-decreasing price function ;·
for each outcome Ω [C.3]. Consequently, one obtains an inequality of the form

(3.1.5) ∑ ; .Ω

Hence, as iterations proceed, one obtains a sequence of relaxed master programs of the
following form.

(3.1.6) Min
(3.1.7) s.t.
(3.1.8) 0, 1
(3.1.9) 0, integer, .

Because the approximation in (3.1.5) (and consequently (3.1.8)) is non-convex, the
master problem in (3.1.6)-(3.1.9) is a non-convex mixed-integer program, and as
indicated in [C.1], this approach is not scalable without further assumptions.

Synopsis of the Research

Our research is motivated by the observation that stochastic programming problems have
a special (decomposable) structure, and in order to solve them in an efficient way, one
needs to take advantage of their special structure. Our approaches use disjunctive
programming ideas to approximate the feasible region by a convex set, and similarly, the
expected recourse function is also approximated using disjunctive programming in a
decomposable manner. Before summarizing the benefits of such an approach, we
describe one of the concepts that is central to our research: disjunctive decomposition
with a branch-and-cut framework for expected recourse approximations, referred to as
D2-BAC. Because D2-BAC uses a Branch-and-Bound (B&B) search in the second-
stage, it allows an “approximate solve” of the second-stage problem by truncating the
number of nodes explored in the B&B search tree. Moreover, note that a B&B search tree
that is obtained for one scenario () can be used to approximate the second-stage MILP
associated with another scenario.

Let denote the set of nodes of the B&B tree that have been explored for the
subproblem associated with scenario . For any node , let ℓ and
denote vectors whose elements are used to define lower and upper bounds, respectively,
on the second-stage (integer) variables. In some cases, an element of may be

 ∞, and in this case, the associated constraint may be ignored, implying that the
corresponding dual multiplier is fixed at 0.

In any event, suppose that for a given , we wish to construct a lower bounding
approximation of the value function of the second-stage problem. The LP relaxation for
node may be written as

5

(3.1.10) ; min
(3.1.11)
(3.1.12) ℓ ,

The above LP can be used to derive a lower bounding function for node , that is, we
obtain an inequality of the form

;
Let denote the epigraph of the above affine approximation. Since the optimal
value of the second-stage problem for a particular outcome is at least as large as the
minimal lower bound, we obtain a lower bound on the subproblem value function for an
outcome by defining a function

(3.1.13) ; Minq Q ω .

Since right hand side in (3.1.13) is a non-convex function, using it directly in the first
stage would result in a Benders' master program which is non-convex, leading to a
problem that is not any easier than (3.1.5). Nevertheless we can convexify (3.1.13), thus
leading to a more manageable master program. This is done by using disjunctive
programming to derive a facet of the set

: clconv .
For each Ω, a facet of clconv provides an affine lower bounding
approximation of (3.1.13). Taking expectations then yields an affine approximation
which replaces (3.1.8) in the master program, and now, the objective function of the
master program is restored to being a piecewise linear and convex function, leading to a
much more tractable approximation.

Table 1 summarizes computational results that have appeared in [A.9]. These instances
are stochastic server location problems (SSLP) in which servers have to be located to
meet demand which may or may not be realized in the future [C.6]. If demand is
realized, then servers have to be allocated in such a way that capacity restrictions are
satisfied and certain operating rules (e.g. servers can be only a specified distance from
demand) must be satisfied, while meeting as much demand as possible. As shown in
[A.4] SSLP problems which are essentially unsolvable without decomposition. (Here
unsolvable refers to the inability to obtain an optimal solution within 10,000 seconds of
computing on a Sun Fire 400 workstation.) However, Table 1 demonstrated that these
are being solved to optimality using various versions of Disjunctive Decomposition (D2).
The earliest version, referred to as D2 in Table 1, uses only set convexification, whereas
the D2-BAC algorithm uses both value function and set convexification [C.11]. The first
two columns represent ideas that were implemented in [A.4], and the column labeled D2-
BAC+SLP refers to a new cut generation process which uses stochastic linear
programming, and a corresponding specialized SLP decomposition to solve the cut
formation LP in [A.9]. The improvements are clearly remarkable, considering that most
of these instances are unsolvable using state-of-the-art deterministic MILP solvers [A.4].

The instances in Table 1 were first reported in [C.6], and subsequently used as a test-bed
for evaluating advances for this genre of decomposition algorithms. Except for the first

6

two instances listed in the following table, we were unable to obtain optimal solutions
using state-of-the-art commercial software. To appreciate the significance of some of the
instances, note that if one were to use a deterministic equivalent formulation of the
instance denoted by 10.50.2000, then the resulting problem would have at least one
million binary variables (10 50 2000). In the decomposition framework however, the
number of first-stage variables is 10 and the number of second-stage variables is 500 (per
scenario). Because of decomposition, the 2000 sub-problems are solved independently,
and as a result we are able to solve the high dimensional deterministic equivalent by
solving a collection of lower dimensional problems. This is why decomposition is a
winning strategy.

Table 1: Performance of Various Decomposition Algorithms for VL-SMIP

As a result of such speed-ups, a collaborative DARPA project between AT&T and
Telecordia is planning to implement these tools for a new generation of design tools for
communications networks.

3.2 Convexification of Mixed-Integer Programming Problems (Thrust B)

SMIP algorithms presented in section 3.1 rely heavily on convexification of MIP
problems. Algorithms for both master and subproblems depend on this operation.
Disjunctive and lift-and-project cuts [C.2, C.3], semidefinite relaxations and
reformulation-linearization technique (RLT) [C.12] have provided alternative approaches
to generate cutting planes that define the convex hull of feasible points of a binary MILP.
The case for MILP with general integers has not been as well understood, even when the
integer variables are bounded. While pure integer programming can be shown to have
finite representation using Gomory cuts, the same is not true for general MILP [C.5], and
prior to the current project, this result was not available for disjunctive programming
methods.

7

MIP Challenge

While disjunctive cuts are natural to use for general MIP problems, a cutting plane
procedure using disjunctive cuts has not been proved to be finitely convergent. Indeed,
the facial disjunctive property [C.2] was deemed critical for finite convergence and this
property holds for binary MIP, but not for general MIP. Unfortunately, as shown in
Figure 2 of [C.10], the absence of the facial disjunctive property could lead to infinitely
many iterations. Subsequently, [C.7] provided the proof that in the absence of the facial
disjunctive property, a one-variable-at-a-time method for convexifying disjunctive sets
leads to an infinite convergent process that ultimately does provide the convex hull of
feasible points. Of course, one could write a binary expansion of each general integer
variable and the resulting formulation is a mixed 0-1 program which can be sequentially
convexified. However, this is well known to be very inefficient because of a large
number of variables, and the loss of any structure of the model.

We address the following questions:

 Is it possible to use the disjunctive programming methodology to describe the
convex hull of MILP solutions in finitely many steps without introducing binary
variables?

 Is there a constructive methodology to obtain an optimal solution to a general
MIP using a disjunctive programming characterization of its convex hull?

 If we are restricted to introduce only one cutting plane in any iteration, is there a
finitely convergent disjunctive programming algorithm that solves a general MIP?

Synopsis of the Research

In this synopsis, we restrict our presentation to only the last bullet mentioned above. This
is in fact the answer to a question that has been open for decades [C.5]. For details
regarding the other bullets, see [B.1] where the concept of cutting plane tree algorithm
was introduced.

In the cutting plane tree , there is a single root node o. For each node , an integer

 keeps track of the cutting planes that will be used to generate a disjunctive cut when
this node is revisited, an integer 1, 2, … , stores the index of the integer variable
that is split, an integer stores the (lower) level of the splitting. Let , and denote
links to the left child, right child and parent nodes of node , respectively. Let be
all nodes on the sub-tree rooted at node (not including node and the leaf nodes).
Let be the collection of the nodes on the path from the root node to node (not
including the root node), let be the collection of nodes in that were formed
as the left child node of its parent, and let be the collection of nodes in
that were formed as the right child node of its parent. Given define

 | 0, ,

, , 1, .
We let store an iteration index, which gives the set to be used in the cut
generation LP (CGLP) (Balas 1979, Sherali and Shetty 80). The set corresponds to
the intersection of the linear relaxation () together with the first 1 cuts. If

8

 , we say that the left (right) child node of is
“fathomed'”, i.e., (). Let denote the collection of all leaf
nodes of the cutting plane tree at the end of iteration k. Then, the set of mixed-integer
feasible points belong to the union of for .

At iteration k, if the current extreme point solution to min , given by is
integral, then we have found the optimal solution to the MIP. Otherwise, we search the
cutting plane tree, to find the last node on the path from the root node such that

 . There are two cases: Case (1) is a leaf node), Case (2) is not a
leaf node _ , , and). In Case (1), we choose a
fractional variable , 1, … , with the smallest index, and let the split variable be

. We create two new nodes: left () and right () children of at the split level
 . We let | and | . In this

case, we also let , as this is the first time the tree search for a fractional solution
stops at node . In Case (2), the cutting plane tree and are unchanged. However, in
this case, we update for all successors of , . We generate a valid
inequality for the set clconv that cuts off (using an extreme
point of the Cut Generation LP). The new inequality is included along with those
defining , and the resulting set is denoted . This process continues until one of
the stopping criteria is satisfied.

Theorem: Assume that the set of feasible solutions of an MIP is non-empty and has
bounded integer variables. Then the cutting plane tree algorithm converges to the
optimal solution in finitely many iterations. (See Chen, Kucukyavuz and Sen 2009).

The above result settles a question that has been open since the inception of mixed-
integer programming fifty years ago!

3.3 Computational Implications of the Cutting Plane Tree Algorithm (Thrust B)

As with deterministic MIP problems, cutting plane schemes are indispensable for
stochastic MIP problems. Section 3.1 clearly demonstrates the power of combining
cutting planes with decomposition. However, some major challenges remain before we
can extend these ideas to general stochastic mixed-integer programs.

The Challenge

The CPT represents an adaptive sequence of disjunctions involving multiple variables,
and is able to discover the convex hull (closure) of any instance of a bounded mixed-
integer programs with general integer variables (MIP-G), without having to specify an a
priori hierarchy. This characterization is a generalization of the sequential
convexification process of [C.2] for MIP with binary variables (MIP-B). However, it is
important to note that the same sequential process of convexification (one variable at a
time) does not yield the convex hull of MILP-G in finitely many steps [C.7]. Prior to this
[C.10] presented examples of non-convergence in which facet inequalities of two-term

9

(simple) disjunctions are derived to cut away the solution to the most recent LP
relaxation. The convexification result presented in [B.1] (Section 3.2) certainly indicates
that there may be hope in that direction, but is this realizable in a computationally viable
algorithm? The challenge is to solve a battery of test problems using only simply cutting
plane methods. Such a test, reported in [B.2] avoids the effects of other tools commonly
used in MIP solvers, thus giving a better indicator of their strength.

Computational Experiments with CPT

In order to isolate and identify the potential of our scheme of generating multi-term
disjunctions, we do not include other computational devices such as branch-and-bound,
other classes of cutting planes, heuristics or preprocessing strategies. Thus, the CPT
algorithm was tested as a pure cutting plane method. Moreover, two different types of
cut generation LPs (CGLP) were devised: one was the weighted cut coefficients (WCC)
formulation commonly used in lift-and-project implementations of the disjunctive cut
principle, and the other is a new normalization scheme based on minimizing the 1-norm
of the cut coefficients (M1NC). The instances used for this study were selected from the
MIPLIB 2.0, 3.0 and 2003 libraries3 that have total number of variables less than or equal
to one thousand and rows less than or equal to one thousand. The computer code was
implemented in C in Microsoft Visual Studio 2003. We conducted our experiments on
Windows XP platform with Intel Q9450 Core 2 Quad processor, with 4 cores, 4 threads,
running at 2.66 GHz speed with 4 GB of RAM. The linear programming solver is IBM
ILOG CPLEX 12.2.

The computational results for each variant is shown in Tables 2 and 3 in the following
pages. Table 2 reports the performance for Binary Mixed-Integer Programs, whereas,
Table 3 reports the same for General Mixed-Integer Programs. The measure of
performance that we are interested in is the gap closure (Gapcl) in these tables. While
some of the harder problems show no gap closure (which is consistent with the other
cutting plane schemes in the literature), the degree of gap closure obtained after an hour
of computing exceeds 50% on average, in both tables. This is indeed remarkable because
we have not used any branching, or multiple specialized cutting planes, as is commonly
done by commercial software.

3 The test instances are available at http://miplib.zib.de

10

Table 2: Performance of CPT on Standard Binary MIP Test Problems

Table 3: Performance of CPT on Standard General MIP Test Problems

 WCC M1NC
Instance Time(s) Cuts T N Gapcl Time(s) Cuts T N Gapcl

bell3a >3600 74 5 9 70.74% >3600 1320 9 17 74.62%
bell5 >3600† 503 2 4 94.28% >3600 1089 4 6 97.19%

blend2 >3600† 440 3 5 64.95% >3600 2551 2 3 41.46%
flugpl >3600 1342 3 5 23.65% >3600 8991 4 8 27.08%
gen >3600† 698 3 6 91.94% >3600 1881 2 3 96.08%
gt2 >3600 663 3 5 97.06% >3600 1958 14 27 93.24%

noswot >3600 315 7 13 0.00% >3600 904 5 9 0.00%
rout >3600 732 2 3 3.13% >3600 2030 2 3 6.95%

timtab1 >3600 1132 2 3 37.50% >3600 3018 3 5 44.02%
timtab2 >3600 1170 2 3 29.40% >3600 2818 2 3 33.92%
Average 706 3.2 5.6 51.27% 2656. 4.7 8.4 51.46%

 WCC M1NC
Instance Time(s) Cuts T N Gapcl Time(s) Cuts T N Gapcl
aflow30a >3600 794 2 3 42.88% >3600 1456 2 3 70.85%
danoint >3600 398 2 3 2.64% >3600 500 5 9 1.74%
dcmulti >3600 975 2 3 99.51% >3600 1390 4 8 100.00%
egout 6.6 173 2 3 100.00% 2.1 120 3 5 100.00%

enigma >3600 1524 4 7 nogap >3600 3324 9 18 nogap
fixnet6 >3600† 675 2 3 69.13% >3600 1132 4 7 90.86%
glass4 21.8* 192 2 3 75.00% >3600 12 4 7 25.00%
lseu >3600 2068 2 3 47.61% >3600 2983 3 5 56.94%

markshare1 >3600 399 11 21 0.00% >3600 2358 25 49 0.00%
markshare2 >3600 185 8 15 0.00% >3600 2475 20 39 0.00%

mas74 >3600 14 2 3 11.01% >3600 0 1 1 0.00%
mas76 >3600 4 3 5 7.05% >3600 0 1 1 0.00%
misc03 >3600 1862 3 5 55.95% >3600 8755 2 3 57.26%
misc07 >3600 1412 3 5 12.03% >3600 4859 4 7 12.06%
mod008 >3600 1413 3 5 24.95% >3600 1710 2 3 31.62%
modglob >3600 619 2 3 85.67% >3600† 479 2 4 99.93%
opt1217 >3600 920 2 3 0.60% >3600 1087 11 21 0.53%
p0033 >3600 280 3 5 72.92% >3600 5203 6 11 99.35%
p0201 >3600 974 2 3 94.74% >3600 2463 2 3 76.57%
p0282 >3600 1753 2 3 97.08% >3600 2664 2 3 98.31%
p0548 >3600 1038 2 3 46.79% >3600 1305 2 3 100.00%

pk1 >3600 969 7 13 0.00% >3600 3373 6 11 0.00%
pp08a >3600† 1169 2 3 98.13% >3600 2355 2 3 99.50%

pp08aCUTS >3600 519 2 3 89.33% >3600 2178 2 3 98.88%
qiu >3600 144 1 1 55.97% >3600 876 2 3 81.38%
rgn >3600 1144 3 5 46.48% >3600 435 5 9 53.65%

set1ch >3600† 1840 2 4 99.95% 2896.7 1675 5 14 100.00%
stein15 >3600 3914 2 3 24.19% >3600 4406 2 3 38.50%
stein27 >3600 4010 2 3 12.93% >3600 4344 2 3 24.63%
stein45 >3600 3051 2 3 0.000% >3600 3507 2 3 0.000%
vpm1 >3600 1485 2 3 84.88% 206.6 1304 2 3 100.000%
vpm2 >3600 1445 2 3 79.48% >3600 1723 2 3 88.14%

Average 1182. 2.8 4.7 49.58% 2201. 4.6 8.4 55.02%

11

3.4 Extensions of Stochastic Decomposition (Thrust A)

The Challenges

Stochastic Decomposition is a sequential sampling algorithm which was designed to
solve two-stage stochastic linear programming (SLP) problems. As far back as 1992, SD
provided near-optimal solutions on very large SLP problems like SSN on work-station
class computers of the time [C.9]. Nevertheless, it still had some limitations: a) it is
unable to solve SMIP instances in which the second-stage has integer variables, and b)
even with SLP problems, its optimality cuts require all previously observed outcomes,
making cut generation more computationally intensive than may be necessary. The first
limitation was overcome in the dissertation research of [A.9], funded as part of this
project. This work not only allows us to handle SMIP instances within SD, but also
allows the SMIP instance to take advantage of the sampling capability of SD, thus
allowing the solution of instances with continuous distributions, and achieving
convergence with probability one. The second challenge was addressed in [A.6] by
introducing the notion of re-sampling during the cut generation process.

Synopsis of the Research

It turns out that the idea of re-sampling is important for SLP, but becomes much more
critical for VL-SMIP. However, the specific goals and strategies for each class of
problems differ in their details because the cut generation for SLP captures value (or
expected recourse) function approximations, whereas, the cut generation in VL-SMIP
refers to the convexification procedure using D2. of the integer feasible points. Because
the setup for SLP is more intuitive, we will discuss that first.

The cut generation process in SD requires that we approximate a subgradient for each
outcome of the value function of the second stage LP. The re-sampling process
simplifies this step by only choosing a fraction of the outcomes that have been generated
until iteration k. One relatively straightforward way to include re-sampling within the cut
generation process is to accept/reject an outcome within a sample, based on a Bernoulli
random variable. Thus, if p is the acceptance (success) probability, then we generate a
uniform random variate for each previously generated outcome, and use only those
outcomes , for which the random number is less than p. Clearly, as p
increases, SD cuts tend to use more outcomes in the approximation. In the
computational implementation of this process, we re-sample only after a certain
minimum number of iterations have been completed because the re-sampling process can
only benefit when the number of outcomes used for cut-generation is large.

We demonstrate the effectiveness of re-sampling by solving an instance referred to as
20Term which arose in Freight Scheduling (Infanger-1999). For this instance, we fix the
maximum number of iterations at 800 for both versions of Regularized SD (with and
without re-sampling) and perform 20 replicated runs. In the re-sampled version, we start
the re-sampling process after 300 iterations and choose the acceptance probability p as
0.7. Finally, the LP solver in our computation uses the ILOG CPLEX callable library,

12

version 10.0, and all programs were compiled and run in a Unix environment running on
a Sun workstation (Sun Fire V440).

Figure 1 reports the solution times for the two versions we are comparing. We record the
CPU time (in seconds) every 100 iterations. As illustrated in Figure 1, there is no
difference between the two versions for the first 300 iterations because re-sampling was
started only after 300 iterations. However, after 300 iterations, the re-sampled version is
faster as iterations proceed. Moreover, at iteration 800, the re-sampled version takes
62 seconds compared to 84.5 seconds for Regularized SD. Thus the re-sampled version
results in a reduction of 26.7 % in computational time.

Figure 2 demonstrates the solution quality obtained by the two versions. As expected,
there is no difference between the two versions SD for the first 300 iterations. At
iterations 400, there is a jump in objective function value due to re-sampling. These
values were obtained by running an out-of-sample evaluator that samples the objective
function, given a first stage solution used in a particular iteration. It is interesting to
observe that although the objective values obtained by the re-sampled version are not as
good in the early iterations of re-sampling, the two versions begin to converge to the
same value as iterations proceed. As a matter of fact, at iteration 800, one observes
scant differences in objective function value between the two versions, with the original
Regularized SD version yielding 254561.8310 and the sampled version providing a
slightly higher value at 254572.1976.

Figure 1: Example savings in computational time using re-sampling

13

Figure 2: Example of negligible loss in optimality due to re-sampling

As for using SD for SMIP problems, asymptotic convergence was proved by Yuan
(2010) for the modification in which D2 cuts are added in each iteration to all of the
subproblems. While the inclusion of all outcomes in the optimality cut provides a
stronger cut, this also increases the time it takes to generate such a cut. Instead, we use
only a subset of the outcomes for optimality cut generation. This approach speeds up the
computations as shown in Figure 3, where the largest instance of Table 1 was solved to
optimality in 400 SD iterations, although our experiments ran the method to 1000
iterations, with no changes observed. The solution shown in Figure 3 are the same ones
that were obtained using D2-BAC+SLP.

Section 4: Personnel Supported

PI: Suvrajeet Sen

Graduate Students: Yang Yuan (graduated in 2010), Yunwei Qi (expected graduation in
2011) and Dinakar Gade (expected graduation 2012).

Post-doctoral Scholar: Shugang Kang.

14

Figure 3: Optimal solution for SSLP instance 10 50 2000 using SD for VL-SMIP

Section 5: Publications

All papers listed below can be obtained by sending e-mail to the PI at
sen.22@osu.edu. For those papers that are not covered in the synopses in the body,
summaries of how they are relevant to the project, and important to the Air Force are
provided below.

Thrust A: Algorithms for Very Large Scale Stochastic Programming

[A.1] T. Genc and S. Sen 2008, “An analysis of capacity and price trajectories for the
Ontario Electricity Market using dynamic Nash Equilibrium under uncertainty,”
Energy Economics, 30, pp. 173-19.

Dynamic Nash games arise in a variety of applications for the Air Force. The
methodology of this paper allows us to handle games in which the future is
uncertain. This particular paper shows the applicability of the methodology of
this project with large scale data from the electricity generation sector.

[A.2] J.L. Higle, B. Rayco, and S. Sen 2009, “Stochastic Scenario Decomposition for
Multi-stage Stochastic Programs,” IMA Journal of Management Mathematics, pp 1-
28.

15

This paper reports on a multi-stage approach to stochastic decomposition by using
a dual version of the multi-stage stochastic programming problem. We show how
the search can be made more efficient by using aggregation-disaggregation
principles. This type of algorithm is useful when the control actions must evolve
with observed data over multiple decision epochs. This paper is very central to
the goals of this project, and the needs of adaptive command and control under
uncertainty.

[A.3] K. Huang, S. Sen, and F. Szidarovszky, “Connections among Decision Field
Theory models of cognition,” submitted to Journal of Mathematical Psychology.

Psychologists have described human decision-making through a class of models
that are classified as Decision Field Theory (DFT). Through experimental
investigations, these mathematical models have been identified as being
important for understanding pilot decision-making, especially for time-critical
decisions. Such models are clearly of value to the Air Force. Our research has
provided a unfied theory for a variety of DFT models.

[A.4] L. Ntaimo and S. Sen 2008, “A Comparative Study of Decomposition
Algorithms for Stochastic Combinatorial Optimization,” Computational Optimization
and Applications, vol. 40, pp. 299-319.

Discussed in the synopsis

[A.5] S. Sen 2010, “Stochastic Integer Programming Algorithms: Beyond Benders'
Decomposition,” accepted for publication in Wiley Encyclopedia on Operations
Research and Management Science.

Discussed in the synopsis

[A.6] S. Sen, Z. Zhou and K. Huang 2009, “Enhancements of Two-Stage Stochastic
Decomposition, Computers and Operations Research, pp. 2434 – 2439. An updated
version entitled “Stochastic Decomposition and Extensions,” is to appear in
“Stochastic Programming: The State of the Art,” in honor of George Dantzig, edited
by G. Infanger.

Discussed in the synopsis

 [A.7] S. Sen and Z. Zhou, “Multi-stage Stochastic Decomposition” submitted to
SIAM Journal on Optimization (currently under revision).

This type of algorithm is useful when the control actions must evolve with
observed data over multiple decision epochs. Clearly this paper is completely in
line with the goals of this project, and the needs of the Air Force.

16

[A.8] Y. Yuan 2010, “Algorithmic Advances in Stochastic Combinatorial
Optimization and Applications, Ph.D. dissertation, ISE Department Ohio State
University, Columbus, OH.

Discussed in the synopsis

[A.9] Y. Yuan and S. Sen 2009, “Enhanced cut generation methods for
decomposition-based branch-and-cut algorithms for two-stage stochastic mixed-
integer programs,” INFORMS Journal on Computing, pp. 480 – 487.

Discussed in the synopsis

Thrust B: Algorithms for Deterministic Mixed-Integer Programming

[B.1] B. Chen, S. Küçükyavuz, S. Sen, “Finite Disjunctive Programming
Characterizations for General Mixed-Integer Linear Programs,” accepted in
Operations Research.

Discussed in the synopsis

[B.2] B. Chen, S. Küçükyavuz, S. Sen, “A Computational Study of the Cutting Plane
Tree Algorithm for General Mixed-Integer Linear Programs,” submitted to
Operations Research Letters.

Discussed in the synopsis

Citations to the Literature

[C.1] S. Ahmed, M. Tawarmalani, N.V. Sahinidis. 2004. A finte branch and bound
algorithm for two-stage stochastic integer programs, Mathematical Programming,
100, 355-377.

[C.2] E. Balas, 1979. Disjunctive programming. Annals of Discrete Mathematics 5 3-
51.

[C.3] E. Balas, S. Ceria, G. Cornu\'ejols 1993, A Lift-and-Project Cutting Plane
Algorithm for Mixed 0-1 Programs. Mathematical Programming. 58:295-324

17

[C.4] C.C. Caroe, J. Tind, 1998, J. L-Shaped Decomposition of Two-Stage
Stochastic Programs with Integer Recourse. Mathematical Programming. 83, 139-
152.

[C.5] A. Martin 2006, “Large Scale Optimization,” Encyclopedia of Life Support
Systems.

[C.6] L. Ntaimo, S. Sen. 2005. The Million Variable "March" for Stochastic
Combinatorial Optimization. Journal of Global Optimization 32.

[C.7] J.H. Owen, S. Mehrotra. 2001, “A disjunctive cutting plane procedure for
general mixed-integer linear programs,” Mathematical Programming, 89, 437--448

[C.8] S. Sen, 2005. Algorithms for Stochastic Mixed-Integer Programming Models.
Handbook of Discrete Optimization, (K. Aardal, G.L. Nemhauser, and R. Weismantel
eds.), North-Holland Publishing Co., pp. 515-558.

[C.9] S. Sen, R.D. Doverspike and S. Cosares 1994, “Network Planning with Random
Demand," Telecommunication Systems, 3, 11-30.

[C.10] S. Sen, H.D. Sherali 1985, “On the convergence of cutting plane algorithms
for a class of nonconvex mathematical programs,” Mathematical Programming, 31,
42--56

[C.11] S. Sen, H.D. Sherali. 2006. Decomposition with branch-and-cut approaches
for two-stage stochastic mixed-integer programming, Mathematical Programming,
106, 203-223.

[C.12] H.D. Sherali, W.P. Adams. 1990. A Hierarchy of Relaxations Between the
Continuous and Convex Hull Representations for Zero-One Programming Problems,
SIAM Journal on Discrete Mathematics, 3, pp. 411-430.

